

Initial Jupiter Orbit Insertion and Period Reduction Maneuver Plans for Juno

Jennie R. Johannesen, Thomas A. Pavlak, and John J. Bordi

Jet Propulsion Laboratory, California Institute of Technology

Pasadena, California

Agenda

- Interplanetary trajectory and Jupiter orbital plans at launch
- Safing events after Earth flyby and redesign of Jupiter mission
- Development of new reference trajectory with 14-day orbits and two 53.5-day "characterization" orbits between JOI and PRM burns
- Contingencies analyzed for JOI burn
 - Delayed start or interrupted JOI burn
 - JOI burn terminated by timer cutoff
- PRM contingencies

Plans at Launch for Orbital Mission

- Solar-powered, spin stabilized spacecraft
- 2+ DV-EGA Trajectory
 - Launch, August 2011
 - DSMs split into two parts (main engine qualified for max. 42 min burn duration)
 - Earth flyby at 550 km altitude; "practice" for perijove; included 20-min eclipse
- Jupiter Orbit Insertion (JOI) to 107-day polar capture orbit
- Period Reduction Maneuver (PRM), Oct. 19, 2016, to 11-day orbits
 - Low-altitude perijoves centered over Goldstone view period for gravity science
 - 192° spacing between subsequent equator crossings for magnetic field investigation
 - 30 orbits give 12° spacing
 - 1 extra orbit
 - Deorbit into Jupiter late Oct. 2017
- Study atmosphere, gravity, magnetosphere
- High radiation environment

Safings, Side-Swap and Need for Redesign

- Spacecraft safings after Earth flyby
 - Near end of eclipse (battery low voltage); SRU-1 marked failed (stellar reference unit state not cleared at exit from safe mode); Sun-Earth tag-up timer not reset
- Side swap six months later
 - Invalid instruction address (memory corruption); task not responding to aliveness "pings" (priority given to data salvage task that ran too long)
- Concern that surprises in radiation/magnetic field environment might cause safing event(s) and lose one or more perijoves before recovery.
 - Only one additional orbit in 11-day mission to recover from a missed longitude.
 - Radiation dosage building fast for second half of orbits
- Began redesign effort involving capture orbit and orbital mission
 - Split the capture orbit into 2 or 3 orbits to provide early science and checkout of science instruments; instruments not on during orbits with JOI or PRM
 - Longer orbit between perijoves could better deal with potential anomalies at Jupiter

New Capture Orbit Period: Different PRM Epoch?

- Changing the capture orbit period likely means a change to the PRM epoch.
- Not all potential PRM dates are acceptable because of high magnetic field magnitude.
- Changing PRM epoch changes the longitude by:
- 870.536°/day * 0.9975 day for each day change in PRM
 - = Jupiter rotation rate * 1/400 days (Earth-Jupiter synodic period ~ 400 days)
- JOI max. burn duration 42 min

More radiation for 2 or 3 orbits

- Project decided on 53.5 day orbit; retains original PRM date
- PJ1 not over Goldstone

Longitude Cadence Important for Orbital Mission

- Considerations for orbit period redesign:
 - Longitude spacing between successive orbits: 870.536°/day * 0.9975 days * integer-days (rounded off to "nice" value)
 - Desire coarse mapping (repeat pattern) then finer mapping
 - Longitude order: Good to cover different parts of Jupiter early in mission
 - 14-day, 21-day, 28-day orbits synch up well with human 7-day work week
 - Maneuver size to maintain equator crossing longitude targets
 - Altitude at perijoves (3100 to 8000 km)
 - Ease/difficulty in placing perijove science within Goldstone DSS-25 view period
 - Number of orbits needed for final mapping (at least 30 orbits)
 - Mission length and cost
 - Radiation dosage

1st 8 orbits of 11-day period case, 192° w. long. spacing: 15 orbits coarse grid, 30 orbits to complete grid

1st 8 orbits of 14-day period case 270° w. long. spacing: 4 orbits coarse grid, 8, 16 orbits finer grids, 32 orbits to complete grid

14-day Orbits Chosen for Reference Mission

- PRM on Wednesday (10/19/16) + 14-day orbits → Wednesdays for early orbit numbers for perijoves and orbit trim maneuvers (transitioning to Tuesdays over mission)
- 270° between successive equator crossings
- Pattern repeats every 4 orbits; need shifts in longitude are made to fill out grid
 - 4 orbits: 90° spacing
 - 8 orbits: 45° spacing
 - 16 orbits: 22.5° spacing
 - 32 orbits: 11.25° spacing
- Larger maneuvers needed to maintain desired longitude spacing but deemed manageable with propellant available for contingencies
 - JOI
 - PRM
 - Backup maneuvers

JOI Contingencies

- JOI is a critical event
 - 35-min nominal duration for 53.5-day capture orbit
 - 25 min and no restart gives ~6-month orbit
 - 22.5 min and no restart gives ~1 year orbit
- Auto restart capability enabled for main engine (500-sec wait, multiple restarts possible), most other fault protection responses disabled
- Recovery from a JOI burn anomaly involves
 - Determining actual capture orbit period, then
 - Determining another PRM epoch (usually 2 times the capture orbit period from JOI epoch) which has low magnetic field magnitude and
 - Resetting starting longitude value to center over Goldstone view period and developing sequence of longitudes and shifts to fill out grid pattern for 14-day mission
- Guidelines for JOI recovery
 - Retain nominal PRM epoch if possible
 - Change to PRM epoch which is +/- 14 days wrt nominal to preserve much of science planning
 - Change to PRM epoch which is +/- 7 days wrt nominal to preserve Wednesday perijoves
 - Change to nearby PRM epoch (with acceptable magnetic field magnitude).
 - Limit hydrazine cost for recovery to 25 kg, although could have higher cost for preserving nominal PRM epoch or having PRM epoch be +/- 7 days or +/- 14 days wrt nominal.

JOI Contingencies Analyzed

- JOI burn anomalies considered in detail:
 - Interrupted burn (especially single 500-sec interruption) with restart,
 - Burn terminated on timer cutoff
- Recovery from interrupted JOI burn
 - 500-sec interruption lengthens capture orbit period by 4.3 days at start of burn and 7.9 days just before middle of burn.
 - Optimal recovery cost is 7 to 15 kg of hydrazine for acceptable PRM dates
 - Cost to retain Wednesday perijoves (PRM date changed by multiple of 7 days) is ~ 43 kg.
 - Can retain nominal PRM date at cost of 30 kg only if (single) interruption occurs more than 33 min into 35-min burn.
- Redesigns for JOI burn terminated on timer cutoff
 - Values of +/- 1% to 2% normally expected based on main engine and IMU performances
 - Timer cutoff values set large (roughly -4% to +5%) so that in worst case, capture orbit period could be 7 days smaller (termination at timer max.) or 7 days larger (termination at timer min. value); PRM dates would be 14 days earlier or later, respectively.
 - Cost to retain Wednesday perijoves could be up to 50 kg for timer cutoff cases.
 - Optimal cost is much lower to change to different PRM date, < 20 kg.
- Plotting hydrazine cost for recovery with different PRM dates vs post-JOI orbit period summarizes wide variety of contingency scenarios. (See next slide.)

Hydrazine Cost to Recover from JOI Anomaly

No PRM on dates with dashed lines because magnetic field magnitude is too high, i.e, > 4.5 gauss. Cost < 20 kg for optimal PRM dates.

PRM dates at +/- 14 days and +/- 7 days wrt nominal epoch (to retain Wednesday perijoves); hydrazine cost can be 50 kg.

Corresponding timer cutoff values.

JOI Burn Duration (min)	Orbit Period (days)
33.6	60.8
34.0	58.9
34.3	57.2
34.7	55.5
35.0	53.9
35.4	52.3
35.7	50.9
36.1	49.5
36.4	48.2
36.8	47.0
	Duration (min) 33.6 34.0 34.3 34.7 35.0 35.4 35.7 36.1 36.4

What if PRM Terminates Early?

- PRM has no restart capability and is not considered to be a critical event because an additional main engine burn could be made on a subsequent perijove (1 additional regulated main engine burn possible).
- Select PRM#2 date depending on period achieved and low magnetic field magnitude criteria.

- If PRM terminates early and another main engine burn is NOT possible, can adjust orbit period to nearby value to place perijoves over Goldstone and give a longitude grid map.
- Options available for different grid depending on post-PRM orbit; would use process similar to that for the 14-day redesign.
- Several transition orbits with RCS thrusters would likely be required.

Concluding Remarks

- Juno project was well prepared to handle contingencies for JOI and PRM main engine burns.
- JOI execution was flawless.
- About a week before the PRM burn, the project noticed an issue with the pressurization of the main engine and called off the burn.
- The project has since decided to remain in the current 53-day orbit rather than perform another main engine burn.
- The trajectory design for the new reference mission is described in paper by Tom Paylak.